
1 / 144

2 / 144

1. What is safety

2. Examples of incorrect code and Rust equivalents

3. Multithreading

4. Caveats

5. Case studies

3 / 144

4 / 144

5 / 144

6 / 144

7 / 144

Rust infrastructure team

Working on a Rust video course for Manning

A handful of crates

Help out with AVR-Rust

8 / 144

9 / 144

10 / 144

Examples of C and C++ code

Does not mean C and C++ code is bad

Does mean C or C++ programmers are bad

Not a professional security researcher

11 / 144

12 / 144

14 / 144

15 / 144

This code isn't even possible in Rust.

I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. [...] This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in
the last forty years.

Tony Hoare, 2009

16 / 144

17 / 144

18 / 144

19 / 144

20 / 144

Equivalent to

21 / 144

22 / 144

23 / 144

false

24 / 144

Signed overflow

abort in debug

wrap in release

Can't shift numbers by a negative amount

Can't shift numbers by more than number of bits

25 / 144

26 / 144

43

27 / 144

28 / 144

29 / 144

Variables changing unexpectedly => hard-to-track bugs

Unchanging value can be optimizated

Effect is different from other languages

Property of the variable, not the value

30 / 144

31 / 144

43

32 / 144

33 / 144

H } H

34 / 144

35 / 144

36 / 144

37 / 144

38 / 144

0

1

2

39 / 144

40 / 144

1

2

3

2

4

6

41 / 144

42 / 144

43 / 144

44 / 144

45 / 144

46 / 144

47 / 144

48 / 144

49 / 144

50 / 144

51 / 144

[0, 1, 2, 2, 4, 6]

52 / 144

53 / 144

42

42

54 / 144

55 / 144

42

56 / 144

57 / 144

Values are moved by default

Also called "transferring ownership"

More efficient

Old value doesn't need to be in a valid state

Owner controls when resources cleaned up (RAII)

59 / 144

Access value without transferring ownership

Can be immutable or mutable

There are rules. Only one of:

Many immutable borrows

One mutable borrow

60 / 144

61 / 144

42

42

62 / 144

63 / 144

64 / 144

65 / 144

43

43

66 / 144

67 / 144

100

68 / 144

69 / 144

70 / 144

Metadata to relate input references to output references

How long the reference will remain valid

Every reference has an associated lifetime

Not always relevant

Lifetime elision handles the common cases

 effectively means "forever"

71 / 144

72 / 144

74 / 144

100

75 / 144

76 / 144

 one of the best parts about stylo has been how much
easier it has been to implement these style system optimizations
that we need, because Rust

 can you imagine if we needed to implement this all in
C++ in the timeframe we have

 yeah srsly

 heycam: it’s so rare that we get fuzz bugs in rust code

 heycam: considering all the complex stuff we’re doing

 heycam: think about how much time we could save if
each one of those annoying compiler errors today was swapped
for a fuzz bug tomorrow :-)

 heh

 you guys sound like an ad for Rust

77 / 144

78 / 144

1073741824

79 / 144

80 / 144

81 / 144

82 / 144

83 / 144

"double-free" 42 CVE entries

84 / 144

"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

85 / 144

"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

"uninitialized" 350 CVE entries

86 / 144

"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

"uninitialized" 350 CVE entries

"null dereference" 1189 CVE entries

87 / 144

"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

"uninitialized" 350 CVE entries

"null dereference" 1189 CVE entries

"out-of-bounds" 1291 CVE entries

88 / 144

89 / 144

"double-free" 36 bugs found

90 / 144

"double-free" 36 bugs found

"out-of-bounds" 84 bugs found

91 / 144

"double-free" 36 bugs found

"out-of-bounds" 84 bugs found

"null dereference" 363 bugs found

92 / 144

"double-free" 36 bugs found

"out-of-bounds" 84 bugs found

"null dereference" 363 bugs found

"uninitialized" This result was limited to 500 bugs

93 / 144

"double-free" 36 bugs found

"out-of-bounds" 84 bugs found

"null dereference" 363 bugs found

"uninitialized" This result was limited to 500 bugs

"use-after-free" This result was limited to 500 bugs

94 / 144

95 / 144

: can be transferred between threads
: references can be shared between threads

96 / 144

: can be transferred between threads
: references can be shared between threads

 (Atomics, Channels, Mutex)

97 / 144

: can be transferred between threads
: references can be shared between threads

 (Atomics, Channels, Mutex)

Futures and async/await

98 / 144

99 / 144

101 / 144

Crates exist to make parallelization easy and safe.

you can change a sequential iterator into a parallel iterator
just by adding the crate, importing the trait and changing

 to . If it’s not thread-safe to do, then it won’t
compile

Chris Morgan

102 / 144

Integer overflow

Deadlocks

Leaks of memory and other resources

Exiting without calling destructors

103 / 144

104 / 144

The Rust compiler is conservative

What we think:

Prevents code that would cause undefined behavior

105 / 144

The Rust compiler is conservative

What we think:

Prevents code that would cause undefined behavior

What it really is:

Prevents code it can't guarantee doesn't cause
undefined behavior

106 / 144

107 / 144

Dereference a raw pointer

Call an unsafe function

Implement an unsafe trait

Read or write a mutable static variable

Read a field of a union

108 / 144

References (/)

Are never

Always point to a valid value

Have lifetimes

109 / 144

References (/)

Are never

Always point to a valid value

Have lifetimes

Raw pointers (/)

Can be

Can point anywhere

Do not have lifetimes

110 / 144

 uses unsafe code internally

You don't need unsafe code to use

Type and module systems keep unsafe code contained

111 / 144

112 / 144

https://xkcd.com/1354/

113 / 144

https://xkcd.com/1354/

114 / 144

Buffer overread

Did not validate user input

Reusing a buffer

Wrote their own memory allocator

115 / 144

116 / 144

117 / 144

118 / 144

Copy-pasting

Poor alignment / curly braces

 makes it hard to follow code

Lack of dead code warnings

Intermingled error and success code

119 / 144

120 / 144

121 / 144

122 / 144

123 / 144

124 / 144

125 / 144

126 / 144

127 / 144

Untrusted input

Integer overflow

Loose integer operations

128 / 144

129 / 144

130 / 144

131 / 144

132 / 144

133 / 144

134 / 144

135 / 144

136 / 144

137 / 144

138 / 144

139 / 144

The best way to prevent these kinds of attacks is either to
use a higher level language, which manages memory for
you (albeit with less performance), or to be very, very,
very, very careful when coding.

https://xda-developers.com/a-demonstration-of-stagefright-like-mistakes/

140 / 144

Reduces or eliminates entire classes of bugs

Frequently at compile time

Minimal to no change in performance

Can performance

Allows us to focus more on the logic of the problem

141 / 144

Rust lets us make new mistakes by preventing us from
making the same old mistakes over and over.

Carol Nichols, Rust core team member

142 / 144

Type system

Safe defaults

Error handling

143 / 144

144 / 144

