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4. Caveats
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Rust infrastructure team

Working on a Rust video course for Manning

A handful of crates

Help out with AVR-Rust
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Examples of  C and C++ code

Does not mean  C and C++ code is bad

Does  mean C or C++ programmers are bad

Not a professional security researcher
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This code isn't even possible in Rust.

I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. [...] This has led to innumerable
errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in
the last forty years.

Tony Hoare, 2009
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Equivalent to
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false 
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Signed overflow

abort in debug

wrap in release

Can't shift numbers by a negative amount

Can't shift numbers by more than number of bits

25 / 144



26 / 144



43 
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Variables changing unexpectedly => hard-to-track bugs

Unchanging value can be optimizated

Effect is different from other languages

Property of the variable, not the value
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[0, 1, 2, 2, 4, 6] 
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Values are moved by default

Also called "transferring ownership"

More efficient

Old value doesn't need to be in a valid state

Owner controls when resources cleaned up (RAII)
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Access value without transferring ownership

Can be immutable or mutable

There are rules. Only one of:

Many immutable borrows

One mutable borrow

60 / 144



61 / 144



42 

42 

62 / 144



63 / 144



64 / 144



65 / 144



43 

43 

66 / 144



67 / 144



100 
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Metadata to relate input references to output references

How long the reference will remain valid

Every reference has an associated lifetime

Not always relevant

Lifetime elision handles the common cases

 effectively means "forever"
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100 
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 one of the best parts about stylo has been how much
easier it has been to implement these style system optimizations
that we need, because Rust

 can you imagine if we needed to implement this all in
C++ in the timeframe we have

 yeah srsly

 heycam: it’s so rare that we get fuzz bugs in rust code

 heycam: considering all the complex stuff we’re doing

 heycam: think about how much time we could save if
each one of those annoying compiler errors today was swapped
for a fuzz bug tomorrow :-)

 heh

 you guys sound like an ad for Rust

77 / 144



78 / 144



1073741824 
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84 / 144



"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

85 / 144



"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

"uninitialized" 350 CVE entries

86 / 144



"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

"uninitialized" 350 CVE entries

"null dereference" 1189 CVE entries

87 / 144



"double-free" 42 CVE entries

"use-after-free" 321 CVE entries

"uninitialized" 350 CVE entries

"null dereference" 1189 CVE entries

"out-of-bounds" 1291 CVE entries
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"double-free" 36 bugs found

"out-of-bounds" 84 bugs found

"null dereference" 363 bugs found

"uninitialized" This result was limited to 500 bugs

"use-after-free" This result was limited to 500 bugs
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: can be transferred between threads
: references can be shared between threads
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: can be transferred between threads
: references can be shared between threads

 (Atomics, Channels, Mutex)
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: can be transferred between threads
: references can be shared between threads

 (Atomics, Channels, Mutex)

Futures and async/await
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Crates exist to make parallelization easy and safe.

you can change a sequential iterator into a parallel iterator
just by adding the crate, importing the trait and changing

 to . If it’s not thread-safe to do, then it won’t
compile

Chris Morgan
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Integer overflow

Deadlocks

Leaks of memory and other resources

Exiting without calling destructors
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The Rust compiler is conservative

What we think:

Prevents code that would cause undefined behavior
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The Rust compiler is conservative

What we think:

Prevents code that would cause undefined behavior

What it really is:

Prevents code it can't guarantee doesn't cause
undefined behavior
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Dereference a raw pointer

Call an unsafe function

Implement an unsafe trait

Read or write a mutable static variable

Read a field of a union

108 / 144



References (  / )

Are never 

Always point to a valid value

Have lifetimes
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References (  / )

Are never 

Always point to a valid value

Have lifetimes

Raw pointers (  / )

Can be 

Can point anywhere

Do not have lifetimes
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 uses unsafe code internally

You don't need unsafe code to use 

Type and module systems keep unsafe code contained
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https://xkcd.com/1354/

113 / 144



https://xkcd.com/1354/
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Buffer overread

Did not validate user input

Reusing a buffer

Wrote their own memory allocator
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Copy-pasting

Poor alignment / curly braces

 makes it hard to follow code

Lack of dead code warnings

Intermingled error and success code
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Untrusted input

Integer overflow

Loose integer operations
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The best way to prevent these kinds of attacks is either to
use a higher level language, which manages memory for
you (albeit with less performance), or to be very, very,
very, very careful when coding. 

https://xda-developers.com/a-demonstration-of-stagefright-like-mistakes/
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Reduces or eliminates entire classes of bugs

Frequently at compile time

Minimal to no change in performance

Can  performance

Allows us to focus more on the logic of the problem
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Rust lets us make new mistakes by preventing us from
making the same old mistakes over and over.

Carol Nichols, Rust core team member
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Type system

Safe defaults

Error handling
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